
page 69

Perl and filePro
by Laura Brody

Before you skip over this article because you think
that it has nothing to do with filePro, or that Perl
is useless on a DOS or Windows platform, read the
next few paragraphs.

I have been threatening to learn Perl for a several
years. This is no exaggeration – I am embarrassed
to report that a “Mother of Perl” CD with at date
of August 1996 on it resides in my CD rack. I
made the decision to jump in, start learning and
using it back in April. I was looking into CGI pro-
grams to add functionality to my web site and Perl
was everywhere. Perl is the most common language
used for CGI programming, hands down. Perl itself
is free with massive collections of free scripts to do
almost anything imaginable available for download
on the internet.

A short time after I started to take a serious look at
Perl and Ken was in the middle of coding new fea-
tures for filePro v5.0, several stray thoughts of mine
spontaneously converged to form a “really cool fea-
ture”. I always thought that menu scripts were the
only major portion of a filePro application which
were not cross-platform compatible. Perl presented
itself as the perfect solution to this nagging prob-
lem. Perl is powerful, mature, widespread, free, and
available on every platform that filePro runs on. I
told Ken about my idea and he agreed that it was
a good solution. Over lunch, he added the code
for PFPERL and for the menu editor to handle Perl
scripts properly on all platforms.

As an added bonus, filePro developers could add
Perl CGI programming to their list of services. Perl/
CGI programming really isn’t that difficult once
you learn a few basics, assuming that you can
already write an HTML page using a no frills text
editor like vi or edit. The filePro Purity Test at http:/
/www.hvcomputer.com/filepro/purity.html was my
first Perl script of any complexity (and my first CGI
script, period) and I am a far cry from a program-
ming genius. (There’s nothing like diving into the
deep end of the pool when you want to learn to
swim. <g>)

I will be covering CGI programming in future
Perl articles in fPDJ, but if you are impatient, you

could read about Perl/CGI Programming at http://
cgi.resourceindex.com/Documentation/ and at http:/
/www.virtualschool.edu/lang/perl/. You could also
examine the source files of the filePro Purity Test
which are in the public download area of my web-
site.

At this point, it is my intention to have Perl as the
defacto standard for filePro menu scripts from this
day forward. No more writing shell scripts (and
trying to write equivalent DOS batch) for the same
application. Nuts to that. I don’t know anyone who
has the time to do the same thing twice. I vote for
writing it once in Perl and being done with it.

With that in mind, it would be helpful for someone
(I guess that would be me) to step up to the plate and
give filePro developers the basic tools and knowl-
edge to start using Perl in their menus. In an effort
to encourage Perl usage by filePro developers, all of
the Perl scripts in this article (and future enhance-
ments to them) will be available on my website in
the public download area. I want people to try them,
examine them, use them and write their own Perl
scripts.

The first thing you need is a copy of Perl (it is
included on many Unix/Linux systems). Try typing
“perl -v” on the command line. If it displays the
current version number, etc. and it is v5.xxx you are
ready to go. If you get a “file not found” message or
the version number is v4.xxx or earlier, visit http://
www.cpan.org/ports/index.html. Find your platform
on the list and download the latest version for your
system (the current version of Perl is v5.6), install
it according to the documentation, and start explor-
ing Perl. Don’t worry if you don’t have filePro v5.0
yet, you can still learn how you can use Perl in
your filePro application. (And, using an external
text editor, you can use those scripts with earlier
versions of filePro.)

This article is a case of the teacher reading one
chapter ahead of the students, so please forgive my
lack of Perl programming expertise. (This means
that experienced Perl programmers who read this
article should be prepared to see some very amateur-
ish code which will cause them to giggle uncontrol-

page 70
lably, but the code will do the job. TMTOWTDI*)
With that disclaimer out of the way, let’s explore
Perl.

Perl was developed in 1986 by Larry Wall. The
name, Perl, stands for “Practical Extraction and
Report Language”, but some people prefer Larry’s
other name of “Pathologically Eclectic Rubbish
Lister”. Larry Wall has the reputation of a rather
unusual individual and his program reflects that
individuality. The bible for Perl programmers is
“Programming Perl” by Wall, Christiansen, and
Schwartz, published by O’Reilly. (It’s equivalent
would be a filePro book written by Howard Wolow-
itz, Ken Brody, and Dave Roeger). It is known as
“the camel book” by Perl hackers. Perl is a con-
glomeration of C and several Unix utilities (includ-
ing shell, sed, awk) just as a camel appears to be a
horse designed by committee. In my mind, the folks
at O’Reilly chose the perfect animal to grace the
cover of this book.

Perl has the reputation of being a cryptic and dif-
ficult language to learn. I feel that any language
can be made quite unreadable by humans (see the
Obfuscated filePro code on page 23). Some of Perl’s
syntax can appear quite bizarre to beginners. I sup-
pose that it doesn’t help Perl’s reputation that there
are Perl obfuscated code and Perl poetry contests
(contestants write a working Perl program in the
form of Haiku poetry and the like). Since I have
C and Unix shell programming in my background,
Perl felt quite familiar and almost comfortable.
If you have programming experience with regular
expressions (including writing your own edits in
filePro), Perl will not look very foreign to you at

all.

Here are some short examples of a Perl script, a
shell script and a C program all doing the same
thing.

Figure 1
This is a very simple example, but you can see
some similarities already. Let’s start examining the
short Perl script. The first line is mandatory if you
want to execute the script by its name, rather than
as “perl scriptname”. This tells the Unix/Linux
shell where to find the Perl executable and that the
file is a Perl script. On other systems, the Perl exe-
cutable is in the path or is specified in an environ-
mental variable. The second line sends the string
“Hello, world” to STDOUT (usually the screen)
followed by a newline.

Figure 2
The next example in figure 2 is a bit more useful.
You can run it from a command prompt or from a
filePro menu. It reads the environment for PFPROG
and FPPROG, to locate the filePro executable pro-

Perl:

#!/usr/bin/perl
print “Hello, world\n”;

Shell:

echo “Hello, world\n”

C:

#include <stdio.h>
main()
{ printf (“Hello, world\n”);
}

Figure 1

*Pronounced "tim-toady" – short for the popular Perl saying "There's More Than One Way To Do It."

#!/usr/bin/perl
grab the following environmental variables
use Env qw(PFPROG FPPROG);
$PFPROG ||= $FPPROG; #if PFPROG has a value use it, otherwise try FPPROG.

@args = ($PFPROG."/fp/dreport","test","-f","perltest","-a");
$RETCODE = (0xffff & system @args)/256; #divide by 256 to get actual code.

if ($RETCODE == 0)
 { print "Normal exit.\n"; }
else
 { printf "system (%s) returned %d:\n","@args",$RETCODE; }

Figure 2 – menu.pl

page 71

::end:

@done::exit("37"):

Figure 3

grams. A command line for calling dreport with
some parameters is built and put into the array
“@args”. A system call is made with those com-
mands and the return code is placed into the vari-
able “$RETCODE”. The value is tested and if the
return code was zero, “Normal exit.” is displayed
otherwise the command line and return code are
displayed.

Figure 3
To see how filePro and Perl can pass information to
each other, try adding the code in figure 3 into the
“perltest” output format code. You will see that
this Perl script will report that the return code was
37. (Note: You can use return codes from 0 to 255).

That little script is a handy starting place for most
filePro programmers, but many of you need to read
the contents of the fppath and config files at some
time. No problem, examine figure 4 and I’ll explain
how it works.

Figure 4
At this point, you may be thinking “So what. I
don’t see what all of the fuss is about. I’ve been
writing shell scripts more complicated than that for
20 years on my Xenix and Unix systems”. But the
exciting thing is that you can take this (or any) perl
script, put it on a DOS/Windows system and run it
without a single change (with the obvious excep-
tion of system calls to programs/scripts not avail-
able from every platform). Unix shell scripts aren’t
portable enough for the job, but Perl is.

Let me take a few moments to explain what some of
the code is doing. I will not attempt to teach you all
of Perl in this article, just enough for you to under-
stand what this code does so that you can modify it
for your own uses with minimal effort.

As I said earlier, the first line is mandatory for all
Perl scripts no matter what platform you are run-
ning on, if you want to execute the script by its
name, rather than with “perl scriptname”. Any-
thing that follows the ‘#’ character is treated as a
comment and ignored by Perl. Although Perl scripts
can have any name and extension, it is customary to
have an extension of “.pl”. It is also customary to

have the description at the top. In “real” Perl scripts,
the documentation is included in “pod” format in
the script itself. I have not had a chance to learn the
syntax of pod just yet, so you will have to wait until
the next issue of fPDJ for more information (after I
learn how it works <g>).

Lines 20 and 21 tell Perl to include the modules
english.pm and cwd.pm. This is similar to a C pro-
gram #include <> statement. English.pm allows
me to use the less cryptic names of the built-in vari-
ables. In this script, I use $OSNAME rather than $^O
and $ARG rather than $_. Cwd.pm allows me to call
getcwd() to get the current working directory on
line 44.

The following section starts to get a little confusing.
Line 24 defines a hash table named %fpenv. A hash
table is a list of information with each entry having
a string name and a value. The string name will be
the environmental variable name and the value will
be the value assigned to the environmental variable.
i.e. in ABE=ASCII, the name is “ABE” with a value of
“ASCII”.

Line 25 loops through all of the environmental vari-
ables in memory (Perl automatically puts them into
hash table %ENV for you) sorted by name. Line 26
pulls the value out of each entry. If the script is
running on a DOS/Windows system, line 28 will
change the name to all upper-case characters.

Line 30 puts the current environmental variable
name into $ARG (commonly known as $_) so that
the “if” statement on line 34 will use the environ-
mental variable name to compare against the pat-
terns ^ABE$, ^PF and ^FP. This will match any
environmental variable that matches exactly “ABE”,
or any variable which begins with “PF” or “FP”.
The following line converts any variables begin-
ning with “FP” to “PF”. I do this because PF vari-
ables have precedence over FP variables in filePro.
Since the variables are being evaluated in alphabet-
ical order, if there is both a FP and PF version of
the same variable, the PF version will overwrite the
converted FP value. (Also, you will only need to
check the PF variable, and not have to check for
both PF and FP every time you want to refer to it.)
The line 36 simply adds the variable and it’s corre-
sponding value to the %fpenv hash table.

On line 43 through 46, I determine what the path

page 72
is to the fppath file and attempt to open it for read-
ing. Since filePro looks for the fppath file in the
root directory on DOS/Windows systems, I have to
see if I have to look for the file there or in the tra-
ditional “/etc/default/fppath” location. On line
44, I append the first two characters of the current
directory (the drive letter and “:”) to “/fppath”.
The substr() works like the mid() in filePro in
that it can be on either side of the “=”, and you need
to give it a string to work with, a starting point and
number of characters to extract or insert. One thing
to remember is that when it comes to string posi-
tions and arrays, filePro starts counting at “1”, but
Perl starts at “0”. Therefore, line 49 places the first
element of the array into the “PFPROG” entry of the
%fpenv hash table.

I dump the entire contents of the fppath file into an
array named “@fppath” on line 47 and remove the
newline characters with Perl’s chomp command on
the next line. The notation “||=” is shorthand for
“if the left side does not have a value, assign the
right side to it”. If “PFPROG” was an environmental
variable and already in the hash table, it will not
overwrite it with the value in the fppath file. (Just as
filePro uses the environment variables to override
the fppath entries.)

Since PFCONFIG can be used to override the stan-
dard location of the filePro config file, I check for it
in the %fpenv hash on line 59. I set $CONFIGFILE to
that value, if it exists, otherwise I set it to the stan-
dard location.

Now, I can locate the filePro config file and read
the entries into %fpenv. I open the file on line 60
and start reading each line in on line 61. The chomp
command will remove the newline character(s).
There is one label in the config file, “Colors:”, that
I test for and ignore if it is found. The split com-
mand takes each line and returns two strings and
puts them into $env and $value. It puts the charac-
ters until the “=” into $env and the remaining char-
acters into $value. Under DOS/Windows, I force
the characters in $env to upper-case. On line 70, I
add the entry to the %fpenv hash table if that envi-
ronmental variable is not already present.

The lines from 78 to 82 send the contents of the
hash table to STDOUT (which is usually the screen)
in alphabetical order so that you can see the results
of the script.

Summary
I wrote these scripts to be a reasonable starting
point for filePro developers to begin using Perl in
their menu scripts. I would welcome comments,
suggestions and improvements to these scripts.

To create the scripts in this article, I relied heavily
on two books for syntax explanations and code
examples: “Programming Perl” by Wall, Chris-
tiansen, and Schwartz; and “Perl Cookbook” by
Christiansen and Torkington. I recommend both of
them very highly. I found the FAQ pages at http:/
/www.perl.com very helpful for a beginner Perl
hacker too. As I explored Perl, I found numerous
websites that were quite helpful and informative,
so I created a page of these Perl resources on
my website at http://www.hvcomputer.com/filepro/
perl.html. Some of the bigger and better collections
of Perl scripts, tutorial pages, books, magazines and
newsgroups are on this page. Although it is far from
comprehensive, it contains more than enough infor-
mation to “make you dangerous”.

Laura Brody is the founder of Hudson
Valley Computer Associates, and is
the mad genius behind the filePro Devel-
oper's Journal. She can be reached
at <laura@hvcomputer.com>

"A computer lets you make more mis-
takes faster than any invention in
human history -- with the possible

exceptions of handguns and tequila."
Mitch Ratcliffe, _Technology Review_ April 1992

In retrospect,
"Let's get the goat drunk"
should have been my cue

to leave the party.

page 73

 1 #!/usr/bin/perl
 2 # This Perl script will read the /etc/default/fppath file
 3 # and the environmental variables PF*, FP* to locate
 4 # the filePro programs and data files. It will print out
 5 # these values and the contents of the config file.
 6 #
 7 # Brought to you by: Laura Brody
 8 # on: 01 July 2000
 9 # filePro Developer's Journal, Volume 1 Number 3.
 10 # Copyright 2000, Hudson Valley Computer Associates, Inc.
 11 # http://www.hvcomputer.com
 12 # This code may be freely distributed as long as this comment
 13 # and author's name is in it. Please send any enhancements
 14 # or suggestions to laura@hvcomputer.com.
 15 #
 16 # It requires the files:
 17 # English.pm (use less cryptic names of built-in variables),
 18 # cwd.pm (current working directory).
 19 # You may need to set PERLLIB to the location of these files.
 20 use English;
 21 use Cwd;
 22
 23 # grab the following environmental variables: ABE, PF* and FP*
 24 %fpenv = (); # define a hash table to store the info
 25 foreach $k (sort keys %ENV) # read in all env vars in alphabetical order
 26 { $v = $ENV{$k};
 27 if ($OSNAME eq "MSWin32")
 28 { $k =~ tr/a-z/A-Z/; # force everything to upper case
 29 }
 30 $ARG = $k;
 31 # Note: Because FPxxx sorts before PFxxx, the PFxxx value will
 32 # override a matching FPxxx entry, which is the same behavior
 33 # as filePro.
 34 if (m/^ABE$/ || m/^PF/ || m/^FP/)
 35 { $k =~ s/^FP/PF/; # Convert FPxxx to PFxxx
 36 $fpenv{$k} = $v;
 37 }
 38 }
 39
 40 # Read PFPROG, PFDATA, and PFDIR from the fppath file
 41
 42 # Decide the location of the fppath file
 43 $PATHFILE = ($OSNAME eq "MSWin32")
 44 ? join "",substr(getcwd(),0,2), "/fppath"
 45 : "/etc/default/fppath";
 46 if (open (PATHFILE,"< $PATHFILE"))
 47 { @fppath = <PATHFILE>; # dump the contents into an array
 48 chomp(@fppath); # remove the newline characters.
 49 $fpenv{"PFPROG"} ||= $fppath[0]; #first line
 50 $fpenv{"PFDATA"} ||= $fppath[1]; #second line
 51 $fpenv{"PFDIR"} ||= $fppath[2]; #third line
 52 close PATHFILE;
 53 }
 54
 55 # Now that we know where the program and data files are located,
 56 # we can read and display the contents of the config file.
 57
 58 # Note: PFCONFIG can override "$PFPROG/fp/lib/config"

page 74

Manifest of files
The files included with this issue are stored
in DOS03.ZIP (for DOS/Windows systems) and
unix03.tar (for Unix/Linux systems). They both
contain the identical information, but formatted
appropriately for the platform. The files within the
zip/tar file have the same basename, but the exten-
sion is different for each platform.

Basename Article

bar39 3of9 Barcode by Jim Asman

esak Barcodes, processing, etc by John
Esak

fpcgi fpCGI by Bob Haussmann

HTMLpt3 HTML Command, part 3

obfus Obfuscated filePro code

perl Perl and filePro by Laura Brody

qwik Personal printer config from Bob
Stockler

uncgi UNCGI by Ted Dodd

Next issue
The theme for the next issue of the filePro Devel-
oper's Journal is "back to basics". This will include
some basic tutorials, common programming situa-
tions and solutions, and neat tricks to add some piz-
zazz to your applications. We also plan on including
an introduction to some of version 5.0's new fea-
tures.

If you would like to submit articles that deal with
topics suitable for filePro Developer’s Journal, we
would be most happy to consider them for pub-
lication. Be sure to follow the current author’s
guidelines, which are available on the web at: http://
www.hvcomputer.com/fpdj/authors.html.

 59 $CONFIGFILE = $fpenv{"PFCONFIG"} || $fpenv{"PFPROG"}."/fp/lib/config";
 60 if (open (CONFIGFILE,"< $CONFIGFILE"))
 61 { while(<CONFIGFILE>)
 62 { chomp;
 63 # skip the "Colors:" label, display everything else.
 64 if(! /^Colors:/)
 65 { ($env,$value) = split(/=/,$ARG,2);
 66 $env =~ s/^\s+//; # remove any leading spaces
 67 if ($OSNAME eq "MSWin32")
 68 { $env =~ tr/a-z/A-Z/; # force to upper case
 69 }
 70 $fpenv{$env} ||= $value;
 71 }
 72 }
 73 close $CONFIGFILE;
 74 }
 75
 76 # For debugging purposes: display the results
 77
 78 print join "", "-" x 20, " contents of fpenv ", "-" x 20, "\n";
 79 foreach $key (sort keys %fpenv)
 80 { print "$key=$fpenv{$key}\n";
 81 }
 82 print join "", "-" x 20, " contents of fpenv ", "-" x 20, "\n";

Figure 4 – fpinfo.pl

