
fileProDeveloper’s
Journal

The definitive source of information for the filePro developer.

ISSN 1527-9847

Volume 2, number 2
June, 2001

Submissions to filePro Developer’s Journal

If you would like to submit articles that deal
with topics suitable for filePro Developer’s
Journal, we would be most happy to consider
them for publication. Be sure to follow the
current author’s guidelines, which are available
on the web at:

http://www.hvcomputer.com/fpdj/authors.html

Guide to symbols.

Each article is marked with symbols to allow
you to easily determine the targeted audience
level and platform requirements.

Audience level is mark using symbols that
should be self-explanatory:

If the article requires a version of filePro later
than 4.5, it will be marked using:

If the article requires a specific operating
system platform, one of the following will
appear.

Unix MS-Windows

 Linux Perl scripts

 Shell scripts Web/Internet

Publisher Laura Brody
Editor Laura Brody
Layout artist Kenneth Brody
Circulation Laura Brody
Assistant editor Elizabeth Winkelmann

The filePro Developer’s Journal is published
quarterly by Hudson Valley Computer
Associates, Inc. (914)739-5004. The Journal
is distributed at the subscription rate of $75
US. Entire contents copyright Hudson Valley
Computer Associates, Inc, 2001. All rights
reserved. No reproduction in whole or in part
may be made without express permission of the
publisher. A subscription entitles you to print a
single copy for your own use.

The programs and ideas in this journal are
provided “as is” without warranty of any kind,
either expressed or implied, including but not
limited to, the implied warranty of fitness for
a particular purpose. The entire risk risk as to
the quality and performance of the programs
documented within is with you. Should the
programs and documentation prove defective,
you (not Hudson Valley Computer Associates,
Inc. nor any authorized representative of
Hudson Valley Computer Associates, Inc.)
assume the entire cost of all necessary servicing,
repair, or correction.

© Hudson Valley Computer Associates, Inc.
2001. All rights reserved.

filePro is a registered trademark of fP
Technologies, Inc. All other brands or product
names are trademarks of their respective
companies.

How to contact Hudson Valley Computer Associates, Inc.
Mail: filePro Developer's Journal
 Hudson Valley Computer Associates, Inc.
 PO Box 859, 120 Sixth Street
 Verplanck, NY 10596-0859
Voice: (914) 739-5004
Fax: (914) 206-4184
E-mail: fpdj@hvcomputer.com
Web: http://www.hvcomputer.com

How to subscribe to the internet filePro mailing list
The internet filePro mailing list is a wonderful resource for filePro
developers and end-users alike, and is available free of charge to anyone
with an internet e-mail account. The mailing list is comprised of a
group of experienced filePro developers, newcomers, and everything in
between. They help each other to understand features, solve problems,
suggest strategies, point you to other places to find information, or just
discuss different aspects of filePro.

To subscribe, send the following e-mail:
 To: majordomo@seaslug.org
 Subject: subscribe
and in the body of the message:
 subscribe filepro-list
 end
You will receive a welcome message, usually within 24 hours, describ-
ing the mailing list, including how to post and how to unsubscribe. You
should save a copy of this message for future reference.

Note: although this is not run by fP Technologies, it is monitored by its
management and development staff.

How to contact the makers of filePro

Mail: fP Technologies, Inc
 5744 W. 79th Street
 Indianapolis, IN 46278

Web: http://www.fptechnologies.com

 Voice Fax E-mail

Support (317)802-0138 (317)802-9378 support@fileproplus.com

Sales US: (800)847-4740 (212)644-9745 sales@fileproplus.com
 International:
 (212)644-9781

TPTB* filepro@fileproplus.com

* “The Powers That Be”, aka “management”.

page 3

Submissions to filePro Developer’s Journal

If you would like to submit articles that deal
with topics suitable for filePro Developer’s
Journal, we would be most happy to consider
them for publication. Be sure to follow the
current author’s guidelines, which are available
on the web at:

http://www.hvcomputer.com/fpdj/authors.html

Guide to symbols.

Each article is marked with symbols to allow
you to easily determine the targeted audience
level and platform requirements.

Audience level is mark using symbols that
should be self-explanatory:

If the article requires a version of filePro later
than 4.5, it will be marked using:

If the article requires a specific operating
system platform, one of the following will
appear.

Unix MS-Windows

 Linux Perl scripts

 Shell scripts Web/Internet

Publisher Laura Brody
Editor Laura Brody
Layout artist Kenneth Brody
Circulation Laura Brody
Assistant editor Elizabeth Winkelmann

The filePro Developer’s Journal is published
quarterly by Hudson Valley Computer
Associates, Inc. (914)739-5004. The Journal
is distributed at the subscription rate of $75
US. Entire contents copyright Hudson Valley
Computer Associates, Inc, 2001. All rights
reserved. No reproduction in whole or in part
may be made without express permission of the
publisher. A subscription entitles you to print a
single copy for your own use.

The programs and ideas in this journal are
provided “as is” without warranty of any kind,
either expressed or implied, including but not
limited to, the implied warranty of fitness for
a particular purpose. The entire risk risk as to
the quality and performance of the programs
documented within is with you. Should the
programs and documentation prove defective,
you (not Hudson Valley Computer Associates,
Inc. nor any authorized representative of
Hudson Valley Computer Associates, Inc.)
assume the entire cost of all necessary servicing,
repair, or correction.

© Hudson Valley Computer Associates, Inc.
2001. All rights reserved.

filePro is a registered trademark of fP
Technologies, Inc. All other brands or product
names are trademarks of their respective
companies.

How to contact Hudson Valley Computer Associates, Inc.
Mail: filePro Developer's Journal
 Hudson Valley Computer Associates, Inc.
 PO Box 859, 120 Sixth Street
 Verplanck, NY 10596-0859
Voice: (914) 739-5004
Fax: (914) 206-4184
E-mail: fpdj@hvcomputer.com
Web: http://www.hvcomputer.com

How to subscribe to the internet filePro mailing list
The internet filePro mailing list is a wonderful resource for filePro
developers and end-users alike, and is available free of charge to anyone
with an internet e-mail account. The mailing list is comprised of a
group of experienced filePro developers, newcomers, and everything in
between. They help each other to understand features, solve problems,
suggest strategies, point you to other places to find information, or just
discuss different aspects of filePro.

To subscribe, send the following e-mail:
 To: majordomo@seaslug.org
 Subject: subscribe
and in the body of the message:
 subscribe filepro-list
 end
You will receive a welcome message, usually within 24 hours, describ-
ing the mailing list, including how to post and how to unsubscribe. You
should save a copy of this message for future reference.

Note: although this is not run by fP Technologies, it is monitored by its
management and development staff.

How to contact the makers of filePro

Mail: fP Technologies, Inc
 5744 W. 79th Street
 Indianapolis, IN 46278

Web: http://www.fptechnologies.com

 Voice Fax E-mail

Support (317)802-0138 (317)802-9378 support@fileproplus.com

Sales US: (800)847-4740 (212)644-9745 sales@fileproplus.com
 International:
 (212)644-9781

TPTB* filepro@fileproplus.com

* “The Powers That Be”, aka “management”.

page 3

page 4 page 5

page 4 page 5

Exposing filePro data through ADO and OLE DB
By Robert E. Haussmann, Ph.D.

This article appears as the first in a three-article series. Part 1 describes the framework for creating an
OLE DB provider for filePro data, and identifies fPSQL as an invaluable tool that will be used in the
process. The second article will demonstrate the creation of a Visual Basic OLE DB provider for custom
filePro recordsets. This provider will harness the power of fPSQL to expose filePro data (DOS/Network or
Native Windows versions) to ADO applications (such as Internet Information Server, Visual Basic, etc.).
The final installment will expand the capability of the provider from read-only queries to full read-write
access, allowing applications that can access ADO recordsets to retrieve, insert, and update records in
filePro databases.

Introduction
A lot of people are waiting (more or less) patiently
for fPTechnologies to ODBC-enable filePro.
Client-side ODBC (the ability to access ODBC data
sources from within filePro processing) has been
targeted for a 2001Q2 release, and should provide
an incredible amount of power and flexibility to the
filePro programmer when interfacing with other
software. Applications should include the ability
from within filePro processing to perform a live
ODBC query to a SQL database, pulling current
inventory numbers into a filePro report being gen-
erated through rreport. Or similarly, using updating
or inserting records in the same SQL database from
within INPUT processing in rclerk.

But many developers need access to filePro data
from applications outside of filePro. Server-side
ODBC for filePro will address this need, but as of
yet fPTechnologies has not committed to a release
date. While workarounds exist (such as importing/
exporting ASCII files), they tend to be cumbersome
and as a general rule do not allow real-time access
to filePro data. Luckily, given Microsoft’s push for
Universal Data Access (UDA), other options do
exist.

Alphabet Soup: OLE DB, UDA, and ADO.
OLE DB is the basis for Microsoft’s Universal
Data Access strategy. It is intended to enhance (and
ultimately replace?) the ODBC layer, extending
access to non-relational data. In the world of OLE
DB, there are two distinct classes: providers (serv-
ers) and consumers (clients). OLE DB-compliant
applications operate in the consumer class (e.g.,
Internet Information Server, Visual Basic Scripts).
OLE DB providers, on the other hand, are respon-
sible for producing and providing recordsets to the
consumers.

Sounds complicated — what does all this mean to
the average filePro developer? Well, simply put, if
we could build a filePro OLE DB provider, filePro
data could be exposed to the rest of the world via
UDA and ADO platforms. To give a real-world
example, a developer using Microsoft’s Internet
Information Server (IIS) Active Server Page (ASP)
platform could, in just a few lines of code, create
a web page that performs a query against a set of
filePro databases and returns real-time data to a
web-based application. For example, the ASP code
in figure 1 would produce a listing of all records and
all fields in the filePro codes database.

Getting Started
So, where do we start? We need to write an OLE
DB provider for filePro. Microsoft provides the
skeleton for creating a generic OLE DB provider
in Visual Studio (version 6.0). In order to use this
generic provider in its most basic form, we need
to be able to access our filePro data on demand
from within Visual Studio. Preferably, we need to
be able to start with an SQL query against filePro
data (issued from an OLE DB consumer, such as
IIS), perform this query, and place the results into
an ADO recordset for return back to the consumer.
The generic provider takes care of the transfer of
data between our Visual Studio application and the
OLE DB interface (see figure 2), but how do we go
about the formidable task of writing an SQL-parser
for filePro data, let alone implement such a parser
while trying to take advantage of filePro indexes,
maintaining record locking, etc.?

Discovering a Little-Known Gem
fPTechnologies sells a filePro add-on known as
fPSQL. This program has been around for quite
some time [ed. note: fPSQL has been around since filePro
version 1.2, at least as far back as 1987], yet does not seem

page 6 page 7

<%
Dim objRS
 querystr = “select * from codes"
 set objRS = server.CreateObject("adodb.recordset")
 objRS.Open querystr,"provider=fpOLEdb;"
 response.write "<TR>"

 for each field in objrs.fields
 response.write "<TD>"
 Response.Write field.name
 response.write "</TD>"
 next
 response.write "</TR>"

 Do until objrs.eof
 response.write "<TR>"
 for each field in objrs.fields
 response.write "<TD>"
 Response.Write field.value
 response.write "</TD>"
 next
 response.write "</TR>"
 objrs.movenext
 loop
objrs.close
set objrs=nothing
%>

Figure 1 – Sample ASP code

§ OLE DB Consumer (IIS) request
(e.g., “SELECT * FROM CODES”)

§ Generic OLE DB wrapper
(Passes query to filePro OLE DB Pro-
vider)

§ filePro OLE DB Provider: interpret
SQL query

§ filePro OLE DB Provider: execute
SQL query

§ filePro OLE DB Provider: create
recordset with results

§ Generic OLE DB Provider
(Passes recordset back to consumer)

§ OLE DB Consumer utilizes OLD DB
recordset
Figure 2. filePro OLE DB provider model.

§ OLE DB Consumer (IIS) request
(e.g., “SELECT * FROM CODES”)

§ Generic OLE DB wrapper
(Passes query to filePro OLE DB Pro-
vider)

§ filePro OLE DB Provider: interpret
SQL query

§ FPSQL — perform SQL query,
return ASCII file

§ filePro OLE DB Provider: create
recordset with results

§ Generic OLE DB Provider
(Passes recordset back to consumer)

§ OLE DB Consumer utilizes OLD DB
recordset

Figure 3. Revised filePro OLE DB provider model

page 6 page 7

to have gained the notoriety/respect that it deserves.
FPSQL allows users to perform SQL queries on
filePro tables, using a subset of the American
National Standards Institute (ANSI) X3.135-1986
SQL standard.

That’s right — fPTechnologies sells a tool that will
allow you to perform read-only SQL queries on
your existing filePro data. FPSQL can be run inter-
actively or from the command line, by specifying
an input parameter file.

A Brief fPSQL Overview
In general, fPSQL uses standard SQL query
syntax. For example, if we have a filePro database
called products, that contains four fields (code,
description, quantity, and price), the follow-
ing query:
SELECT * FROM PRODUCTS

would produce output of the form:
Code Description Quantity Price
WD-RED Red Widget 324 19.95
WD-BLU Blue Widget 128 19.95
WD-YEL Yellow Widget 0 19.95

The asterisk denotes “all fields”. Because we did
not include any conditional selection clases, this
command would return the contents of the entire
table (all fields, all records).

We can constrain this output by specifying individ-
ual fields to return and utilizing a “WHERE” clause,
in the form:
SELECT code, description
FROM PRODUCTS WHERE quantity>0

Resulting in:
Code Description
WD-RED Red Widget
WD-BLU Blue Widget

The Real Power of fPSQL
By now, those of you familiar with SQL are asking
yourselves, “But can I JOIN tables with fPSQL?”
The answer is yes — and with the full benefit of
existing filePro automatic indexes. For example,
suppose that we have two filePro files: cust and
salesrep. Assume that, in addition to other fields,
each database contains the following:
Cust Fields
Name (30,*) Customer name
SalesRepID (5,.0) Sales rep number
YTDPurch (15,.2) Year to date pur-
chases
Active (1,yesno) Is customer active?

Salesrep Fields
ID (5,.0) Sales rep number
Name (30,*) Sales rep name

(for the sake of this example, we assume that sales
rep ID is a unique value).

With fPSQL, you can perform the following query:
Select cust.name, salesrep.name,
cust.YTDPurch
from cust, salesrep
where cust.salesrepID = salesrep.id and
cust.active=’Y’

This statement will select all customer records
with the “active” flag set to “Y”. For each record,
fPSQL will display the customer’s name, YTD
purchases, and sales rep name (where this name is
pulled from the salesrep file):
cust.name salesrep.name cust.YTDPurch
A-1 Auto Jane Smith 1000.00
AAA Auto John Doe 500.00
ABC Auto John Doe 100.00

In effect, fPSQL utilizes a SQL join to automati-
cally perform a lookup to the salesrep database and
retrieve the appropriate sales rep name.

Differences between fPSQL and ANSI SQL
(courtesy fPSQL Quick Reference Guide 4.8,
Manual version March 30, 2000)
In building our OLE DB provider, it will be impor-
tant to keep in mind there are a number of differ-
ences between ANSI SQL and fPSQL, including
the following:

§ SELECT DISTINCT clause is not imple-
mented

§ Password security is based on the creation pass-
word

§ FPSQL is case-insensitive in sorts and compari-
sons (as is the rest of filePro)

§ SET clause added

§ filePro’s system-maintained fields can be used

§ filePro’s additional field types can be used (e.g,
MDY, HMS, etc)

§ Associated fields can be used

§ Fields can be referenced by field number (@1,
@2, etc)

§ filePro's MID function added

As mentioned previously, fPSQL can be used in
command-line mode, by specifying a parameter

page 8 page 9

file. In addition to other system-level parameters,
the SET OUTPUT command can be used to redirect
output to a file. With these tools in hand, we are
ready to design the framework of our provider.

The filePro OLE DB Provider — Basic
Design
Given that we have fPSQL available, our job in
creating an OLE DB provider for filePro data just
became much easier. We now have a tool that will
allow us to take a standard SQL query and run it
against filePro datasets. We do not have to worry
about record locking or trying to use indexes effi-
ciently, because fPSQL takes care of this for us.
Assuming that our provider can utilize fPSQL in
command-line mode, our provider need only per-
form general housekeeping tasks, pass a query to
fPSQL, and then interpret the results (see figure 3).

In the next installment of this article, we will create
a generic OLE DB provider using Visual Basic.
This provider will rely on fPSQL to perform SQL
queries against filePro data. These results will
then be interpreted and formatted into an ADO
recordset, which is then passed back to the calling
consumer. Of course, to follow along you will need
to purchase your own copy of fPSQL from fPTech-
nologies J.

Robert Haussmann can be reached at
haussma@nextdimension.net

page 8 page 9

Four filePro Favorites
Beginner, Intermediate, Advanced, & Extra Credit

Part 3 (Advanced)
By John Esak

I was casting around for ideas to write about and it suddenly came to me. Why not ask the users of my
programs for some of the features they like. I also want everyone at various expertise levels to be able to
read and get something out of any article I write, so after getting their ideas (and the list was huge, they
love filePro!), I picked a simple app, an intermediate app, an advanced one, and something which any
level user might find interesting. Let’s just call it the Extra Credit idea.

#3 OPENDIR/NEXTDIR – Using Template Docu-
ments for Word Processing Merges
This is probably the favorite function of most of
the *nix users I know. It allows them to be stand-
ing on a filePro record, press a key that shows them
the most current group of template word process-
ing and allows them to choose one. This causes
Microsoft Word on the Windows box they are using
to load the chosen document for them. They can
then alter this document to taste, print it, fax it, etc.
When they are done and close the document, they
are brought back to the same place they were on
the filePro record when they launched the function.
This was a huge time saver for everyone, and all by
itself, it is a nifty function. Later, the ability to take
filePro data from the current record and automati-
cally merge it onto the chosen template document
was added. Now, this becomes a truly seamless
integration between the high productivity tools of
Windows like Microsoft Word, and the high pro-
ductivity tool of *nix, filePro.

Prerequisites
There are several prerequisites that must be in
place before this code piece can work for you. It
is entirely written with DECLAREd variables, so you
can immediately integrate it into any of your appli-
cations, but the prerequisites must still be fulfilled.
First, you must be using a terminal emulator on
the Windows box that can pass sequences to Win-
dows. I am using FacetWin and show coding that
will work with it. The same thing can be done with
Anzio, Ice-10 and some other emulators. You will
need to adjust your code to fit these packages.

NOTE: For the FacetWin implementation to work,
you must have the (O)ption “Enable Run Program
Escape Sequence” checked on the Properties page
of the emulator.

The next requirement is that you set aside two
directories on the *nix box, one for the template
documents themselves, and one for the use of this
processing. This is a “tmp” directory that will hold
files that will be used one time only. They will gen-
erally be overwritten as time passes. Your users will
create the template documents in the first directory,
adding, changing and deleting as required. The pro-
gram will dynamically show them only the current
templates. It copies the one they choose to the spec-
ified “tmp” directory set aside for this programming
so the original template does not get modified.

The final requirement is that this temporary direc-
tory must be “mapped” as a network drive on any
Windows box that needs to use this program.

The directory names and the map letter of the net-
work drive are tunables inside the processing table.
You can customize them for your system once you
see how the program works. I strongly recommend
setting up the directories as shown in this process-
ing first, creating some test Microsoft Word doc-
uments in the template directory. You will avoid
many problems if you see how things work first
before you move things around.

Description
Let me describe this application a little more fully. It
assumes that there are a group of people working on
a *nix system, say a Customer Service department
all working on standard filePro data files. They
are all accessing the *nix system from Windows95/
98/2K/Me/NT boxes via an emulator that supports
Escape Sequences (i.e., FacetWin, Anzio, etc.) The
filePro files might be an Invoice file, a Customer
file etc. This is unimportant. Prepared beforehand
are template documents that are often sent to people
in these filePro files. The program displays the list
of templates so the user can point-and-pick the one

page 10 page 11

they want and immediately it appears on the screen
in Microsoft Word. At this point, they can print it,
fax it, email it or whatever. When they are done and
close the Word document, they are right back where
they started on the filePro record. (As an added fea-
ture, shown after the main discussion below, data
from the filePro record can be merged into the tem-
plate document so there is relatively little for the
operator to do other than choose the document,
print it and close the document.)

Here is the only processing table needed. It can
be inserted into any table as is assuming you set
the tunables to match your system, or make your
system match the tunables as they are set already
(suggested). Please note, the reason I suggest you
use the table as is and make the two required direc-
tories on your *nix box, and map to the same letter
on your Windows machine, is that there is no check-
ing done in this table for success on any of the file
I/O calls. This is because in some instances (like
this), it is not necessary to check the return values
of things you know will work. Unfortunately, I only
know they will work as they are set up here. I can
pretty safely say that if you adjust the tunables to
your site, and have the directories setup correctly,
things will work just as they should. But remember,
there is no checking, so usually, what you will see
is “nothing” happening correctly, or sometimes an
error from Word. Instead of adding checking on the
return values of the I/O calls, you can place “SHOW
syscmd” statements just before each SYSTEM state-
ments to see if the command about to be executed
look right.

(See figure 1.)

Most of this code is pretty self-explanatory for an
advanced programmer, but I’m sure some of you

who have less programming under your belt might
want to follow along and learn how this table works,
so here is an explanation of the more salient lines.

Line 4 - Build an array for the listbox that will hold
the template documents. I have arbitrarily chosen
“99” as the maximum number of templates that will
be on hand at any one time. This may vary for you,
but “99” is a nice high number, and any more than
this would become unfeasible I think. The counter
which is defined elsewhere to step through these
documents is defined as 3,.0, so you could raise
this “99” up to “150” or even “999” if you like.

Line 9 - This line defines the handles to be used
when doing file I/O. They are not given any edit
type, because I do not check these handles to see
if they contain valid return values or not. The form
of the I/O commands requires them, so they are
needed. They don’t do much else but fulfill the
syntax requirements though.

Line 13 - This is perhaps the most operative line of
the table. It opens the template document directory
and counts the number of files with a “.doc” exten-
sion.

Lines 14 and 15 - This is the loop bounds checking.
These lines will keep the process getting filenames
from the following NXTDIR function until there are
no more files left to get.

Line 16 - This line is even more operative than
the OPENDIR line, since OPENDIR is essentially use-
less without NEXTDIR. The NEXTDIR function gets
each successive filename and stores it in the vari-
able LINE. Actually, it stores much more than just
the filename. It returns a formatted string that holds
the essential file information. The string is 86 char-
acters long, formatted as shown in figure 2.

v4.8.01 and higher NEXTDIR() return format is:

 Position Length Edit
 filename 1 - 32 32 left justified
 extension 34 - 43 10 left justified
 size 45 - 58 14 right justified, with commas
 date 60 - 69 10 MDYY/
 time 71 - 79 9 HMS, followed by "A" or "P"
 fullname 81 -112 32 left justified
 (all entries are separated by a space character)

Figure 2

page 10 page 11

File Name: test Processing Table: input
 1 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: end
 2 ------ - - - - - - - - - - - - - - - - -
@keyT If: '@keyT
 Then:
 3 ------ - - - - - - - - - - - - - - - - -
 If: 'tunables customize these to your system
 Then: '
 4 ------ - - - - - - - - - - - - - - - - -
 If: 'define a listbox to hold the files found in template directory
 Then: dim list_of_docs[99]
 5 ------ - - - - - - - - - - - - - - - - -
 If: 'define the directory where templates are stored for communal use
 Then: declare doc_dir; doc_dir="/tmp/docs"
 6 ------ - - - - - - - - - - - - - - - - -
 If: 'define a tmp directory we need, must be mapped to map_ltr
 Then: declare global tmp_doc_dir; tmp_doc_dir="/u/tmp/docs"
 7 ------ - - - - - - - - - - - - - - - - -
 If: 'define the mapltr used to mount tmp directory to the Windows box
 Then: declare map_ltr; map_ltr="T:"
 8 ------ - - - - - - - - - - - - - - - - -
 If: '
 Then: 'end_of_tunables
 9 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: declare handle, handle_c
 10 ------ - - - - - - - - - - - - - - - - -
 If: 'number of files returned by opendir
 Then: declare num_docs(3,.0)
 11 ------ - - - - - - - - - - - - - - - - -
 If: 'line returned by nxtdir, filename portion of the line
 Then: declare line(112), filename
 12 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: declare counter(3,.0); counter=""
 13 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: num_docs=opendir("*.doc",doc_dir)
 14 ------ - - - - - - - - - - - - - - - - -
loop_ct If: counter lt num_docs
 Then: counter=counter+"1"
 15 ------ - - - - - - - - - - - - - - - - -
 If: not loop_ct
 Then: handle=closedir(); goto finlist
 16 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: line=nextdir(); filename=mid(line,"81","32")
 17 ------ - - - - - - - - - - - - - - - - -
 If: filename co "." 'strip off any extension if in sight
 Then: filename=mid(filename,"1",(instr(filename,".")-"1"))
 18 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: list_of_docs[counter]=filename
 19 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: goto loop_ct

page 12 page 13

 20 ------ - - - - - - - - - - - - - - - - -
finlist If: 'finlist
 Then:
 21 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: cls("22")
 22 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: declare choice(2,.0), syscmd; declare global the_doc
 23 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: 'put the listbox up on the screen
 24 ------ - - - - - - - - - - - - - - - - -
choose If:
 Then: choice=listbox(list_of_docs,,counter)
 25 ------ - - - - - - - - - - - - - - - - -
 If: @sk eq "BRKY"
 Then: end
 26 ------ - - - - - - - - - - - - - - - - -
 If: @sk eq "SAVE"
 Then: end
 27 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: the_doc=list_of_docs[choice]
 28 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: declare doc, path_doc_wq, path_doc_woq
 29 ------ - - - - - - - - - - - - - - - - -
 If: 'put back the stipped off extension
 Then: doc=the_doc{".doc"
 30 ------ - - - - - - - - - - - - - - - - -
 If: 'full path to document with quotes around it + _@id + .doc
 Then: path_doc_wq="\""{tmp_doc_dir{"/"{the_doc{"_"{@id{".doc\""
 31 ------ - - - - - - - - - - - - - - - - -
 If: 'full path to document without quotes around it + _@id + .doc
 Then: path_doc_woq=tmp_doc_dir{"/"{the_doc{"_"{@id{".doc"
 32 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: syscmd="cp"<"\""{doc_dir{"/"{doc{"\"" < path_doc_wq
 33 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: system noredraw syscmd
 34 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: syscmd="chmod 777"<path_doc_wq
 35 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: system noredraw syscmd
 36 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: declare esc_seq
 37 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: esc_seq=chr("27"){"[2]c:\progra~1\micros~1\office\winword.exe \""{
 map_ltr{the_doc{"_"{@id{".doc\""{chr("10"){""
 38 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: handle_c=create("/tmp/catseq_"{@id,"wr0")

page 12 page 13

 39 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: handle=write(handle_c,esc_seq); handle=close(handle_c)
 40 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: syscmd="cat /tmp/catseq_"{@id
 41 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: system noredraw syscmd
 42 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: handle=remove("/tmp/catseq_"{@id)
 43 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: end

Figure 1

(Just a small plug. This information was taken
from “Laura’s Help Files” which came with the
“Laura’s Quick Reference Guide” I purchased from
www.hvcomputer.com. An excellent set of docu-
mentation that every filePro programmer would
find extremely useful.)

Once the LINE variable is filled with this info, MID
is used to parse out the “fullname” of the file.

Line 17 - This line employs INSTR and MID to
remove the “.doc” extension. There is no reason to
show this extension in the listbox of available tem-
plates. Users usually never see this extension, and
besides it takes up space on the screen.

Line 18 - The array “list_of_docs” (which will
be used as the listbox) is filled field by field with
each of these doctored filenames.

Line 19 - The procedure is sent back to the loop
tests.

Line 24 - This is the first time the user sees what
is happening. A listbox of all the available template
word documents is put up on the screen.

Lines 25 and 26 - Allow the user to press either
BREAK or SAVE and cancel the function.

Line 27 - Their choice of document is stored in
the variable “THE_DOC”. (This variable is DECLAREd
GLOBAL so it can be used on a call table later.)

Note: Actually, from here on in, the biggest concern
of the rest of this table is to use quotes correctly.
Because long filenames now support SPACES,
simple commands which used to work fine, do not

work. Care must be taken to surround long file-
names with quotes at the appropriate times. For
example, you can no longer do something like this:
Then: filename="/tmp/document one.doc";
system "cp" < filename < "/tmp"

This would translate to:
 cp /tmp/document one.doc /tmp

The number of arguments would be wrong for the
“cp” command. This is why you will see several
copies of the filename in this processing table, some
with quotes, without quotes, full path name, simple
filename, etc. I wish it could be easier, but the
spaces have to be dealt with properly.

Lines 28 through 31 - Defines the various versions
of the filename as described above.

Lines 32 and 33 - These lines copy the chosen tem-
plate document to the special tmp directory (with
the addition of the ID of the person running the
routine). This way, the templates stay unmarred,
and the user can change this copied version to their
needs.

Lines 34 and 35 - Changes the mode of the file to
be 777 or read-writable-executable by anyone. This
bypasses all permissions problems for filePro.

Lines 36 and 37 - Define the full Escape Sequence
needed to open the Word document. Note that this
is the path required on our machines. Your path
to the “winword.exe” file may vary. If you like,
you can just ensure that “winword.exe” is in the
PATH of the Windows box. Then, using the full path-
name would not be required, you could just use
“chr("27")[2]winword.exe …”.

page 14 page 15

Lines 38 and 39 - These are the filePro I/O com-
mands needed to create a file and fill it with the
Escape Sequence just built. It is important to note
that the file must be CLOSEd after it is loaded with
the sequence.

Lines 40 and 41 - These lines build the command
that will cat the file just created and then sends the
command via SYSTEM to the Windows box. (Where
it will be picked up and executed by Windows.)

Line 42 - This removes the temporary “catseq”
file. It is not really necessary to do this, as it will be
recreated over and over as needed for each user.

You will be surprised at how nicely this process
works once you get it put into place. The integra-
tion between *nix and Windows is so tight that the
user just sees how much easier this is than finding
and opening the template manually. This process as
is will make users very happy.

Merging filePro data with the template doc-
uments
If you really want to blow their minds though, you
can add one small processing table, and one line
to the processing table above and actually merge
data from the filePro record directly onto the tem-
plate document. This makes sending out personal-
ized letters of varying kinds a very productive task
run entirely from your filePro database.

On the Microsoft Word side, the only thing that has
to be done is the template documents must already
be built as primary Merge documents. This is easily
done, most secretaries know how to do this and can
usually show you the procedure. It involves a 1,2,3
step process of picking the name of the datafile that
will be merged with this primary document, putting
the merge fields on the document, and choosing
which fields from the data file merge with which
fields on the Word document.

Note: Use a TAB delimited data merge format. That
has always worked fine for me, and it is what the
following processing table uses to create the merge
data file.

IMPORTANT: It is very important that you name the
data files for the merge operation with the following
convention. Give them the same name as the docu-
ment itself with a .txt instead of .doc extension. If
your template is called “capabilities.doc”, call
the merge data file “capabilities.txt” and make

sure that you are pointing to the the mapped special
“tmp” directory. This is where the filePro process
will put the merge data, and consequently that Word
will find it there, too.

The only change needed to the existing processing
table is to add a CALL to the “mrg” processing table.
Do this on line 35 by adding it after the SYSTEM
statement. Like this:
 35 ------ - - - - -
 If:
 Then: system noredraw syscmd;
 call "mrg"

The “mrg” processing table is shown in figure 3.

There is only one final thing to do before any of
this will work. You must create a special macro
in Microsoft Word that will actually perform the
merge of a document and a data file from the com-
mand line and return to the command line. This
may take you some time (it took me the better part
of a morning to make it work the first time), but it is
worth the struggle. What you are going to do is start
up the macro recorder and capture the keystrokes
necessary to merge the document with the specified
merge data file. These steps are simple, again most
secretaries can show you how to do this. The key
is to name the macro specifically with the same
name that will be on the processing table. I used
the name “mergemacro”. More important than this
is that you add the Close macro to the end of the
macro you create. Otherwise, the Word document
will not close automatically and return the user to
the filePro screen from which they came.

Once you have recorded and saved this macro with
the name “mergemacro”, you now have to add this
as a parameter to the Escape Sequence which brings
up Microsoft Word and the designated document.
Do this on Line 37 by inserting it just after the doc-
ument name and before the chr("10") as shown in
figure 4.

That’s it. Now the users can add template docu-
ments at will, and everyone can use them whenever
they need them. I have put this little process into
many different situations and I’m sure you will find
many places for it yourself.

page 14 page 15

File Name: test Processing Table: input
 1 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: gosub doexp; gosub puthdr
 2 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: gosub doexp; gosub mrgdata
 3 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: END
 4 ------ - - - - - - - - - - - - - - - - -
doexp If:
 Then: declare exp_file
 5 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: declare extern the_doc, tmp_doc_dir
 6 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: exp_file=tmp_doc_dir{"/"{the_doc{".txt"
 7 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: export ascii merge=(exp_file) r=\r f=\t
 8 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: return
 9 ------ - - - - - - - - - - - - - - - - -
mrgdata If: 'use an array to close up blank lines if necessary
 Then: dim array[5](30); clear array
 10 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: declare ctr(1,.0); ctr="1"
 11 ------ - - - - - - - - - - - - - - - - -
 If: Name ne ""
 Then: array[ctr]=Name; ctr=ctr+"1"
 12 ------ - - - - - - - - - - - - - - - - -
 If: Company ne ""
 Then: array[ctr]=Company; ctr=ctr+"1"
 13 ------ - - - - - - - - - - - - - - - - -
 If: Address_1 ne ""
 Then: array[ctr]=Address_1; ctr=ctr+"1"
 14 ------ - - - - - - - - - - - - - - - - -
 If: Address_2 ne ""
 Then: array[ctr]=Address_2; ctr=ctr+"1"
 15 ------ - - - - - - - - - - - - - - - - -
 If: Address_3 ne ""
 Then: array[ctr]=Address_3
 16 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: merge(1)=array["1"]
 17 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: merge(2)=array["2"]
 18 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: merge(3)=array["3"]
 19 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: merge(4)=array["4"]

page 16 page 17

 20 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: merge(5)=array["5"]
 21 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: return
 22 ------ - - - - - - - - - - - - - - - - -
puthdr If:
 Then: merge(1)=fieldname(-,"1")
 23 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: merge(2)=fieldname(-,"2")
 24 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: merge(3)=fieldname(-,"3")
 25 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: merge(4)=fieldname(-,"4")
 26 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: merge(5)=fieldname(-,"5")
 27 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: return

Figure 3

37 ------ - - - - - - - - - - - - - - - - -
 If:
 Then: esc_seq=chr("27"){"[2]c:\progra~1\micros~1\office\winword.exe \""{
 map_ltr{the_doc{"_"{@id{".doc /mergemacro\""{chr("10"){""

Figure 4

page 16 page 17

Four filePro Favorites
Beginner, Intermediate, Advanced, & Extra Credit

Part 4 (Extra Credit)
By John Esak

I was casting around for ideas to write about and it suddenly came to me. Why not ask the users of my
programs for some of the features they like. I also want everyone at various expertise levels to be able to
read and get something out of any article I write, so after getting their ideas (and the list was huge, they
love filePro!), I picked a simple app, an intermediate app, an advanced one, and something which any
level user might find interesting. Let’s just call it the Extra Credit idea.

#4 HTML - Fancy Printing Made Easy
I know that Ken Brody has been doing the defini-
tive HTML course and reference in this journal. It
has been invaluable to me. I also know that there
are many die-hard Unix users who still have not
gotten their feet wet with HTML yet, and most of
them feel they will never have a use for it. This
small article is not meant to teach you HTML like
Ken’s articles, but rather to entice you to want to
learn a little about what the HTML filePro functions
may be able to do for you. This is an extremely
simple application that lets you print some fancy
fonts and tables without knowing much of anything
about HTML. It assumes that you have the setup
described in Section #3 of this article, i.e., you are
connecting to your *nix box via an emulator like
FacetWin (or Anzio) that lets you capture and exe-
cute Escape Sequences on the Windows side that
are sent out from your Unix processing table. If this
is the case, you can generate nifty looking HTML
forms, bring them immediately to the screen for
any particular record, print them, fax, them, email
them, etc., and then close them out to be returned to
the filePro record from which you came. It’s much
easier than trying to do the same thing with a filePro
output format, believe me.

This is what the process below will generate. We
can use the same “test” file that was used in Section
#2 of this article. The first record’s data is shown in
figure 1.

The document the processing table will bring to the
screen in your Windows browser is shown in figure
2. (In the example, Internet Explorer is used.)

This rendition is actually done in Microsoft Word
and not HTML, but the HTML version is very simi-
lar. Be careful, when your users see things like this
on their screen, available to be printed at the touch
of a button, they are very likely to have you refor-

mat all of their forms into HTML documents!

The processing table is shown in figure 3. It is
really very much shorter than this, but I have put
almost everything on a line by itself so the func-
tions will be clearer as you follow them.

Lines 1 through 12 - These lines do essentially what
the Section #3 processing table did to generate an
Escape Sequence to the Windows box. However,
the process is sent through the subroutine “gethtm”
which generates the HTML document first. This
document is given as to Internet Explorer as the file
it should open.

Line 14 - This line creates the HTML document
itself and names it with the value of found in field
1.

Line 15 - This starts the body of the document.

Line 16 - This line prints in Heading 1 format the
specified text and pushes field 1 up against the
text.

Line 17 - This prints a “horizontal rule”, a line.

Line 18 - This inserts a paragraph start.

Line 19 - This generates a table with 4 columns, 2
rows, and cell padding (the space around the text in
the cells) of “10”.

Line 20 - This starts the first row of the table.

Lines 21 through 23 - This puts the text “Product
Type” in the first cell of row 1.

Lines 25 through 32 - These lines insert their text
into successive cells in row 1 as above.

Line 33 - This line closes off the first row.

Line 34 - This starts row 2.

Lines 35 through 46 - These lines insert filePro data
from various fields into the successive cells of row
2.

page 18 page 19

Line 47 - This closes off the second row.

Line 48 - This closes off the table.

Line 49 - This closes off the creation of the docu-
ment.

Line 50 - Returns back to the line which called this
subroutine.

I hope some of these processes are useful to you,
and I wish you good luck in your work with
filePro.

 TEST
 --

 Name: 12345
 Company:
 Address_1:
 Address_2:
 Address_3:

 +-Comments
 : Square sheet
 : 27"
 : 300/case
 : $36.96
 :
 :
 :

Screen 0 Enter Selection > Record: 1
Figure 1

Product Specifications – Spec#12345
Product Type Size Pack Price (1-10)
Square sheet 27” 300/case $36.96

Figure 2

page 18 page 19

File Name: test Processing Table: input
 1 ------ - - - - - - - - - - - - - - - - -
 Then: end
 2 ------ - - - - - - - - - - - - - - - - -
@keyT If:
 Then: declare esc_cmd, handle, handle_c
 3 ------ - - - - - - - - - - - - - - - - -
 Then: esc_cmd=""{chr("27"){"[2]c:/progra~1/intern~1/iexplore.exe t:/" { 1
 { ".htm"{chr("10"){""
 4 ------ - - - - - - - - - - - - - - - - -
 Then: handle_c=create("/tmp/catseq."{@id,"wr0")
 5 ------ - - - - - - - - - - - - - - - - -
 Then: handle=write(handle_c,esc_cmd)
 6 ------ - - - - - - - - - - - - - - - - -
 Then: handle=close(handle_c)
 7 ------ - - - - - - - - - - - - - - - - -
 Then: gosub gethtm
 8 ------ - - - - - - - - - - - - - - - - -
 Then: declare runss3(100)
 9 ------ - - - - - - - - - - - - - - - - -
 Then: runss3="chmod 777 /u/tmp/docs/" { 1 { ".htm"
 10 ------ - - - - - - - - - - - - - - - - -
 Then: system noredraw runss3
 11 ------ - - - - - - - - - - - - - - - - -
 Then: system "cat /tmp/catseq." { @id
 12 ------ - - - - - - - - - - - - - - - - -
 Then: end
 13 ------ - - - - - - - - - - - - - - - - -
gethtm If: '*gethtm
 Then:
 14 ------ - - - - - - - - - - - - - - - - -
 Then: html :CR "/u/tmp/docs/" { 1 { ".htm"
 15 ------ - - - - - - - - - - - - - - - - -
 Then: html :BO
 16 ------ - - - - - - - - - - - - - - - - -
 Then: html :H1 "Product Specifications - Spec#" { 1
 17 ------ - - - - - - - - - - - - - - - - -
 Then: html :HR
 18 ------ - - - - - - - - - - - - - - - - -
 Then: html :PA
 19 ------ - - - - - - - - - - - - - - - - -
 Then: html :TA :CO "4" :BO "2" :CP "10"
 20 ------ - - - - - - - - - - - - - - - - -
 Then: html :TR
 21 ------ - - - - - - - - - - - - - - - - -
 Then: html :TD
 22 ------ - - - - - - - - - - - - - - - - -
 Then: html :TX "Product Type"
 23 ------ - - - - - - - - - - - - - - - - -
 Then: html :TD-
 24 ------ - - - - - - - - - - - - - - - - -
 Then: html :TD
 25 ------ - - - - - - - - - - - - - - - - -
 Then: html :TX "Size"
 26 ------ - - - - - - - - - - - - - - - - -
 Then: html :td-
 27 ------ - - - - - - - - - - - - - - - - -
 Then: html :TD

page 20 page 21

 28 ------ - - - - - - - - - - - - - - - - -
 Then: html :TX "Pack"
 29 ------ - - - - - - - - - - - - - - - - -
 Then: html :td-
 30 ------ - - - - - - - - - - - - - - - - -
 Then: html :TD
 31 ------ - - - - - - - - - - - - - - - - -
 Then: html :TX "Price (1-10)"
 32 ------ - - - - - - - - - - - - - - - - -
 Then: html :td-
 33 ------ - - - - - - - - - - - - - - - - -
 Then: html :TR-
 34 ------ - - - - - - - - - - - - - - - - -
 Then: html :TR
 35 ------ - - - - - - - - - - - - - - - - -
 Then: html :TD
 36 ------ - - - - - - - - - - - - - - - - -
 Then: html :TX 6
 37 ------ - - - - - - - - - - - - - - - - -
 Then: html :TD-
 38 ------ - - - - - - - - - - - - - - - - -
 Then: html :TD
 39 ------ - - - - - - - - - - - - - - - - -
 Then: html :TX 7
 40 ------ - - - - - - - - - - - - - - - - -
 Then: html :td-
 41 ------ - - - - - - - - - - - - - - - - -
 Then: html :TD
 42 ------ - - - - - - - - - - - - - - - - -
 Then: html :TX 8
 43 ------ - - - - - - - - - - - - - - - - -
 Then: html :td-
 44 ------ - - - - - - - - - - - - - - - - -
 Then: html :TD
 45 ------ - - - - - - - - - - - - - - - - -
 Then: html :TX 9
 46 ------ - - - - - - - - - - - - - - - - -
 Then: html :td-
 47 ------ - - - - - - - - - - - - - - - - -
 Then: html :TR-
 48 ------ - - - - - - - - - - - - - - - - -
 Then: html :TA-
 49 ------ - - - - - - - - - - - - - - - - -
 Then: html :CR-
 50 ------ - - - - - - - - - - - - - - - - -
 Then: return

Figure 3

page 20 page 21

Customized, Word-wrapped E-mail from filePro
By Kenneth Brody

Over the years, many methods of sending e-mail from a filePro application have been developed. I would
guess that, in most cases, these are pre-written form letters, perhaps with some filePro-generated table in
the middle. In this article, I will show how to generate form letters in which filePro data is included inline,
while still keeping margins, justification, and word-wrap intact.

Note that this article depends on *nix-specific fea-
tures, and will not work as-is on DOS/Windows
systems.

A simple attempt
The simplest method normally used is to create a
filePro form, containing everything laid out as you
want, with filePro fields scattered throughout. This
is generally sent to a file, and then the Unix mail
command (or some other mail client) is called to
send the file out via e-mail. A sample form is shown
in figure 1a. It could be called with a few simple
processing statements, such as:
PRINTER FILE "/tmp/email.dat"
FORM "MyEmail"
PRINTER RESET
SYSTEM "mail user@foo.com </tmp/
email.dat"

While this method is quick and easy, as you can
see from the sample output in figure 1b, the gaps
that are left around the data give it an “unfinished”
look.

Using “nroff” for formatting
Unix includes a text formatter called “nroff”
which we can use to format the output generated
by filePro. (There are programs called “troff”
and “groff” which are similar, but I will be using
nroff throughout this article.) In its simplest form,
you give it a text file where paragraphs are sepa-
rated by blank lines, or started with an indent, and
any single-spaced text in between is taken as a
single paragraph. nroff will then word-wrap and
justify the text within each paragraph.

See figures 2a and 2b for a simple example.

Using the same processing above, you can send
your filePro output through nroff before e-mailing
it, by changing the last line to:
SYSTEM "nroff /tmp/email.dat | mail
user@foo.com"

A modified version of the original form along with
the output of this version of the command is shown
in figures 1c and 1d. Note how the gaps around the

filePro data have been removed, and the remain-
ing text properly word-wrapped. Also note that
the fields are no longer imbedded within each line,
but rather each field ends the line. This is because
multiple spaces within the text on a line (as would
happen, as shown in figure 1b) would remain, and
defeat the whole purpose of having run it through
nroff in the first place. While this may look funny
within the format, you can see that nroff has nicely
re-wrapped the lines. I will discuss the “.br” later.

If that’s all nroff could do, it wouldn’t be much of
a text formatter. In fact, it is a very powerful pro-
gram that has been used to format entire books, and
even the Unix “man” pages are usually formatted
with nroff. While a complete tutorial on nroff is
beyond the scope of this article (you could probably
write an entire book on the subject), I will discuss
some of the basics that are useful for filePro e-mail
later on in this article.

Using “sendmail” rather than “mail”
The last piece of the puzzle is a program to handle
sending the formatted e-mail. While you can use
the mail command for this purpose, it was really
designed as an MUA (“Mail User Agent”). That is,
it provides a user interface for reading and send-
ing mail. When you compose a message to be sent
with mail, it generates the appropriate headers and
hands it off to an MTA (“Mail Transport Agent”) to
do the actual transmission.

Given that there are limited options to mail, and
the need to pass the subject, CC addresses, BCC
addresses, and the recipient all on the command
line, and the fact that it will simply format the
headers and call an MTA, why not call the MTA
directly? That’s where sendmail comes into play.

Dealing with an MTA rather than an MUA requires
that you include a properly-formed header, as well
as the body of your message. While that may sound
intimidating to someone unfamiliar with the inter-
nals of Internet e-mail, it’s really quite simple. The

page 22 page 23

10 20 30 40 50 60 70 80
....:....|....:....|....:....|....:....|....:....|....:....|....:....|....:....|
..............................D.A.T.A...L.I.N.E.S...............................
Subject: Past due notice
To: *em

Dear *1 <3

It has come to our attention that your account is seriously past due.
Your balance of *5 is *6 days past due. If we do not receive
payment within *7 days, we will be forced to take appropriate legal
action against you.

 Respectfully yours,

 Harry Small
 President
 Small Computer Enterprises, Inc.

.............................E.N.D...O.F...F.O.R.M..............................
Figure 1a

Subject: Past due notice
To: "John Doe" <root@linux2.hvcomputer.com>

Dear Mr. Doe

It has come to our attention that your account is seriously past due.
Your balance of $100.00 is 90 days past due. If we do not receive
payment within 10 days, we will be forced to take appropriate legal
action against you.

 Respectfully yours,

 Harry Small
 President
 Small Computer Enterprises, Inc.

Figure 1b
Subject: Past due notice
To: “John Doe” <root@linux2.hvcomputer.com>

Dear Mr. Doe

It has come to our attention that your account is seriously past
due. Your balance of $100.00 is 120 days past due. If we do not
receive payment within 10 days, we will be forced to take appro-
priate legal action against you.

 Respectfully yours,

 Harry Small
 President
 Small Computer Enterprises, Inc.

Figure 1d

page 22 page 23

header is simply a series of lines consisting of a
keyword, colon, space, and additional information.
For example, “From: <laura@hvcomputer.com>”
or “Subject: Call for articles”. Following
the header lines is a blank line, and then the body of
the message.

If you’ve ever looked at all of the header lines that
your MUA normally hides from you, you might be
wondering how you generate all of that information
to send your e-mail. The answer is “you don't”. In
fact, the only required header line that sendmail
needs passed to it is something to tell it the recipi-
ent. This can be any of “To”, “CC”, or “BCC”. The
following is a perfectly legal e-mail to send via
sendmail:

Cc: <root@localhost>

This is a simple e-mail.

For our purposes we will add one more header line,
“Subject”, to make the e-mail more informative.
Other header items, such as Date and Message-ID
will be generated by sendmail.

Once you have built your e-mail with headers in
place, you send it to the command “sendmail -t”
to be handled. Using the same example we started
with, this could be done by adding the “To” and
“Subject” lines at the top of your form, followed

by a blank line, followed by the body of your mes-
sage, and then changing the SYSTEM command once
again, to:
SYSTEM "cat /tmp/email.dat | sendmail -t"

You should note that I have used “cat” here rather
than “nroff”. Remember how nroff reformatted
the text in figures 2a and 2b? Well, unless we do
something special, it will also justify and word-
wrap the “To” and “Subject” lines as if they were
one paragraph. (And, if we put a blank line between
them to force a paragraph break, there will be a
blank line in the output, terminating the header sec-
tion.)

Some rudimentary nroff formatting
Formatting in nroff documents is done with com-
mands imbedded within the document itself. Com-
mands are on lines that start with a period, and
are always on lines by themselves. (As opposed
to HTML, for example, where formatting is done
within the text itself.)

In true Unix tradition, commands are very terse. For
example, to set the length of a page to 11 inches,
the command “.pl 11i” would be used. To set
flush-left text, the command is “.ad l”. Some con-
ditional code (taken from the “tmac.doc” macro
library – and no, I don’t know what it does) could

 10 20 30 40 50 60 70 80
....:....|....:....|....:....|....:....|....:....|....:....|....:....|....:....|
..............................D.A.T.A...L.I.N.E.S...............................
Subject: Past due notice
.br
To: *em

Dear *1 <3

It has come to our attention that your account is seriously past due.
Your balance of <5
is <6
days past due. If we do not receive
payment within <7
days, we will be forced to take appropriate legal action against you.

 Respectfully yours,

 Harry Small
 President
 Small Computer Enterprises, Inc.

.............................E.N.D...O.F...F.O.R.M..............................

Figure 1c

page 24 page 25

Four score and seven years ago our fathers brought forth, upon
this continent, a new nation, conceived in liberty, and dedicated
to the proposition that “all men are created equal”

Now we are engaged in a great civil war, testing whether that
nation, or any nation so conceived, and so dedicated, can long
endure. We are met on a great battle field of that war. We come
to dedicate a portion of it, as a final resting place for those
who died here, that the nation might live. This we may, in all
propriety do. But, in a larger sense, we can not dedicate -- we
can not consecrate -- we can not hallow, this ground -- The
brave men, living and dead, who struggled here, have hallowed
it, far above our poor power to add or detract. The world will
little note, nor long remember what we say here; while it can
never forget what they did here.

It is rather for us, the living, we here be dedicated to the
great task remaining before us -- that, from these honored dead
we take increased devotion to that cause for which they here,
gave the last full measure of devotion -- that we here highly
resolve these dead shall not have died in vain; that the nation,
shall have a new birth of freedom, and that government of the
people by the people for the people, shall not perish from the
earth.

Figure 2a

Four score and seven years ago our fathers brought forth, upon
this continent, a new nation, conceived in liberty, and dedicated
to the proposition that “all men are created equal”

Now we are engaged in a great civil war, testing whether that na-
tion, or any nation so conceived, and so dedicated, can long en-
dure. We are met on a great battle field of that war. We come to
dedicate a portion of it, as a final resting place for those who
died here, that the nation might live. This we may, in all pro-
priety do. But, in a larger sense, we can not dedicate -- we can
not consecrate -- we can not hallow, this ground -- The brave
men, living and dead, who struggled here, have hallowed it, far
above our poor power to add or detract. The world will little
note, nor long remember what we say here; while it can never for-
get what they did here.

It is rather for us, the living, we here be dedicated to the
great task remaining before us -- that, from these honored dead
we take increased devotion to that cause for which they here,
gave the last full measure of devotion -- that we here highly re-
solve these dead shall not have died in vain; that the nation,
shall have a new birth of freedom, and that government of the
people by the people for the people, shall not perish from the
earth.

Figure 2b

page 24 page 25

look like this:
.ie "\\$1"|" \{\
. if "*(mN"Op" .ds A\\n(aC \fR\\$1\fP
. if "*(mN"Ar" .ds A\\n(aC \fR\\$1\fP
. if "*(mN"Fl" .ds A\\n(aC \fR\\$1\fP
. if "*(mN"Cm" .ds A\\n(aC \fR\\$1\fP
. if "*(mN"It" .ds A\\n(aC \fR\\$1\fP
.\}
.el .ds A\\n(aC \\$1

As I said, you could write an entire book on
nroff.

For our purposes, however, we are only interested
in a very limited subset of all the nroff commands
available:

§ .nf Disable fill

§ .fi Enable fill

§ .ad Adjust text (l=left, r=right, c=center,
n=justify)

§ .pl Page length

Basically, “.nf” and “.fi” disable and enable
nroff’s functionality of combining and re-wrap-
ping lines within a paragraph, so that line breaks
are kept within the disabled sections. (Similar to
HTML’s <PRE> and </PRE> tags.) When filling is
enabled, the “.ad” command tells nroff how to fill
the lines of text, whether that be flush-left, flush-
right, centered, or justified. Finally, “.pl” controls
the length of the page being output. (Blank lines
will be added if necessary to fill the page.)

Putting everything together
The final version of our form is in figures 3a and 3b.
(The main paragraph is repeated 3 times, to demon-
strate different adjust values.)

First, the “.pl 1” command sets the page length
to 1 line. This effectively turns off nroff’s adding
blank lines to fill the page. (Otherwise, you would
always end up with a multiple of 66 lines in your
e-mail, even if the form itself is shorter. While this
is useful when sending to a printer, it is unnecessary
for e-mail.)

Next, the “.nf” command turns off fill. This keeps
each of the header lines on separate lines in the
output. After the header lines, “.fi” re-enables fill.
This could have been done by adding an explicit
line break (“.br”) between each header line, but
this method makes for a cleaner format, especially
if you want to include additional header lines here.

The paragraph that makes up the body of the mes-
sage has been repeated three times in this example,
in order to show the differences between flush-left
(“.ad l”), justified (“.ad n”), and no-fill (“.nf”)
formatting options.

Finally, we include the signature at the bottom of
the message. Note that these will appear on their
own lines, as nroff takes their indentation as a sign
that a new paragraph has started, without leaving a
blank line between them. (This could not have been
used to place the header entries on separate lines,
as the header entries must start in column 1, unless
they are a continuation of the previous line.)

Eliminate temp files and SYSTEM commands
Finally, I should note that if the intention is to have
filePro generate a file which is simply going to be
sent through a command pipeline for processing,
you can eliminate the temporary file and SYSTEM
command by specifying the command pipeline as
the printer destination:
PRINTER "| nroff | sendmail –t"
FORM "MyEmail"
PRINTER RESET

To take this one step further, and to eliminate varia-
tions in different environments, the command pipe-
line can be defined in pmaint, rather than duplicated
everywhere you need it. For example, on RedHat
6.0, sendmail is in the /usr/sbin directory, which
is not normally part of the PATH, meaning that
you would have to explicitly state “/usr/sbin/
sendmail” in every reference. If you were to move
to a different system where sendmail is in a dif-
ferent directory, you would have to change every
reference. By defining it within pmaint, there is but
a single reference that needs to be changed. I have
defined a printer named “email”, type “nocodes”,
with “| nroff | /usr/sbin/sendmail –t” as the
destination. The processing then consists of:
PRINTER NAME "email"
FORM "MyEmail"
PRINTER RESET

Generating printed form letters
Using these same techniques, there is no reason
why you need to send this information through
sendmail and generate e-mail out of your forms.
By simply eliminating the header lines, and sending
nroff’s output to the printer rather than sendmail,
you can just as easily generate printed form letters
that are formatted just as well.

page 26 page 27

In fact, there is no need to create two versions of the
form. Instead, place the e-mail header fields (and
the blank line that follows) in one form, and the
body of the form in another. You can then use the
FORMM command to combine the two (or more) for
e-mail, or just use the body when printing:
PRINTER NAME "email"
FORMM "EmailHeaders"
FORMM "FormLetter"
FORM "MyDotSig"
PRINTER RESET

PRINTER NAME "laserjet"
FORM "FormLetter"
PRINTER RESET

10 20 30 40 50 60 70 80
....:....|....:....|....:....|....:....|....:....|....:....|....:....|....:....|
..............................D.A.T.A...L.I.N.E.S...............................
.pl 1
.nf
Subject: Past due notice
To: *em
.fi

Dear *1 <3

.ad l
It has come to our attention that your account is seriously past due.
Your balance of <5
is <6
days past due. If we do not receive payment within <7
days, we will be forced to take appropriate legal action against you.

.ad n
It has come to our attention that your account is seriously past due.
Your balance of <5
is <6
days past due. If we do not receive payment within <7
days, we will be forced to take appropriate legal action against you.

.nf
It has come to our attention that your account is seriously past due.
Your balance of <5
is <6
days past due. If we do not receive payment within <7
days, we will be forced to take appropriate legal action against you.
.fi

 Respectfully yours,

 Harry Small
 President
 Small Computer Enterprises, Inc.

.............................E.N.D...O.F...F.O.R.M..............................

Figure 3a

Acknowledgments
Although I have used nroff on and off over the
years, I am a bit rusty, and I found the man pages
somewhat lacking while writing this article. I
found <http://www.cd.pdx.edu/~trent/gnu/groff/
groff_toc.html> to be a good refresher on the groff
formatting commands.

page 26 page 27

Date: Sun, 31 Mar 2002 15:12:14 -0500
From: root <root@linux2.hvcomputer.com>
Message-Id: <200203312012.PAA00850@linux2.hvcomputer.com>
Subject: Past due notice
To: "John Doe" <root@linux2.hvcomputer.com>

Dear Mr. Doe

It has come to our attention that your account is seriously past
due. Your balance of $100.00 is 120 days past due. If we do not
receive payment within 10 days, we will be forced to take appro-
priate legal action against you.

It has come to our attention that your account is seriously past
due. Your balance of $100.00 is 120 days past due. If we do not
receive payment within 10 days, we will be forced to take appro-
priate legal action against you.

It has come to our attention that your account is seriously past due.
Your balance of $100.00
is 120
days past due. If we do not receive payment within 10
days, we will be forced to take appropriate legal action against you.

 Respectfully yours,

 Harry Small
 President
 Small Computer Enterprises, Inc.

Figure 3b

page 28 page 29

Sorting Multi-Column Reports by Column Rather Than Row
By Jim Asman

Overview
A short while ago I needed to produce a simple
report with an alphabetical sort on a name field.
This type of output is a basic function for filePro;
however, in this case the report really needed to be
in a multi-column format with the sort running from
top to bottom down each column across the page.
This could be an enrollment listing, a voter list, or
what have you. If the printed fields are collectively
rather narrow, we certainly would want to print
more than a single column across the page.

The Problem
While filePro generally makes the formatting of a
simple report almost trivial, a multi-column report
can be far more difficult. You could use a label
format to generate the layout, but that would pre-
clude a heading if desired, and further the sort of a
label format runs across the rows rather than down
the columns.

A workable solution might entail setting up the
output as a single page form rather than a report
and place all of the heading fields as well as all of
the data fields on the format directly. If you had,
let's say, four columns each with 55 lines, you are
looking at a minimum of 220 data fields to main-
tain, plus whatever fields that may exist in the head-
ing. It becomes a particularly tedious process if you
need to move the data fields around a bit as well. In
processing, the fields could then be populated in the
desired order. There are undoubtedly other ways to
approach this format, but let me present one where
the PCL language makes it easy.

PCL to the Rescue
With the assistance of two different PCL print-
codes, we can use a "vanilla" filePro report format
and print as many columns as we can fit across the
page. This technique can also be used on a label
format if you prefer the sort to run down the col-
umns rather than across the rows. In addition, PCL
allows very precise positioning of the text on the
label itself, and that can be very important of you
are crowding the text onto the label. That is a likely
scenario on "three across" labels which aren't very
wide to begin with.

PCL5 vs. PCL3
There are two different PCL commands we can
use to set up additional columns in the report. The
"sheet offset" command will only work on PCL5
printers. This includes all standard LaserJets and a
few DeskJet models, the 1200, 1600, and the 2250.
Other PCL3 DeskJet printers simply do not support
the offset command. There is salvation, though, for
DeskJet users. Although not as flexible, the "left
margin" command is supported by both PCL3 and
PCL5 printers.

The basic technique is to define the report as a single
column as you would normally, but long enough to
contain all the records for an entire page. Then
through processing, PCL codes are injected into the
data stream that redefine both the left margin posi-
tion and the current row position.

PCL Sheet Offset Command (^[&l###U,
^[&l###Z)
The sheet offset command is a mechanism to pro-
vide an extra margin on print jobs that may require
additional space on one side or the other, perhaps
for binding or punching etc. The beauty of this
command is that you can design the layout so the
text is normally centered, and in the case where you
require a binding edge, you only need to add the
offset code once for the entire job. Now, consider
a duplex (printed on both sides) print job that was
going to eventually be put into a report folder that
requires an extra half inch for binding. In a duplex
job, the offset needs to be applied to the left side of
the front and to the right hand side on the back of
the sheet. This is precisely what the "sheet offset"
command does, automatically. I bring up duplex-
ing as it has implications if we duplex our multi-
column report.

The syntax for the "sheet offset" command is
^[&l###U where ### represents the width of the
desired offset, stated in decipoints (1/720's of an
inch). Note that the command ends with "U" and
in this case the "U" specifies the long edge of the
page. The same command but ending in "Z" refers
to the short edge of the page. Offset values repre-
sent absolute positions across or down the page

page 28 page 29

independent of resolution, pitch, or user units. The
default value for either command is "0".

In portrait mode, positive "U" values will shift the
whole PCL page to the right, and likewise positive
"Z" values will shift the PCL page down. Negative
values move the print to the left and up the page
respectively. ^[&l360U will establish an extra half-
inch margin on the left. The "U" and the "Z" refer
to the same physical edge of the page regardless of
the orientation, so if you are printing in landscape
mode, the "Z" command will move the print left
and right and the "U" command up and down.

If you change to landscape mode, the previous
top of the sheet becomes the right hand edge. So
to get a left offset in landscape mode you need to
supply a negative value to the "Z" command. For
example ^[&l-1440Z would move the left margin
two inches to the right of the default position on
a landscape page. When any offset is applied, the
entire PCL coordinate system is moved the speci-
fied amount; i.e., position 0x0y is relocated and any
PCL positioning codes are referenced from the new
offset location.

Row Number Command (^[&a###R)
The row number command directs the CAP to the
row specified by the value in the command, but
does not move the cursor from its current position
along the row. As PCL numbers the rows beginning

Heading 1
Heading 2
Heading 3
Heading 4
Data 1^[&l0L
Data 2
Data 3
....
....
Data 56^[&l1920U^[&a-56R
Data 57
Data 58
....
....
Data 112^[&l3840U^[&a-56R
Data 113
Data 114
....
....
Data 168^[&l0U^[&l1L

Figure 1

Heading 1
Heading 2
Heading 3
Heading 4
Data 1 Data 56 Data 113
Data 2 Data 57 Data 114
Data 3 Data 58 Data 115
........
........
Data 56 Data 112 Data 168

Figure 2

with "0" the argument required will be one less than
the desired filePro row number. So to position the
CAP on the sixth line on the output, the command
^[&a5R would do the job. If you precede the argu-
ment with a "+" or "-" sign, then the command is
interpreted as a position relative to the current row.
So ^[&a-5R will run the cursor back up the page
5 rows. The physical location where the CAP is
located after the command is executed is totally
dependent on the current line spacing. Row four is
located at a different vertical position when printing
at 6 lpi vs. 8 lpi. This is good because our filePro
output formats are generally line oriented. This is
the last of the commands necessary to produce the
multi-column output. Now let's look at the details
of making this work.

Defining the Output Format
Assume that we want to define a report format that
has a four line heading plus 56 data lines. That
brings us to a normal LaserJet default of sixty print
lines per page. Further, our data fields permit three
columns across the page allowing 168 records
per page (56 * 3). The page length defined on the
filePro output format is (records per page + no. of
heading lines), which in this case is 172 (168 + 4).
From filePro’s standpoint we have a four-line head-
ing followed by 168 lines of data. Define both lines
per page and lines to print per page as 172. From the
printer’s standpoint we have but 60 lines per page.

In processing the task is to relocate the CAP back
to the first data line after we print a full column of
data. At that same time we want to change the offset
to position new print data on the next column to the
right. Once the last column has been filled, we let
the printer do its terminating linefeed and eject the
page. Figure 1 shows how the 172 lines are output
by filePro with the attendant printcodes. Figure 2
then shows how the 172 lines are interpreted by the

page 30 page 31

printer and are assembled onto the 60 print lines on
the page.

Define the heading section as you would on any
report format. The data format line would be some-
thing like the following.
*1 *2 *pc

Field 1 contains “Last Name” and field 2 contains
“First Name”. The final field “pc” contains PCL
code, but it is only loaded when the 56th, 112th,
and the 168th record are being processed. The field
is defined as non-global so its value disappears
between records. pc will contain the complete PCL
code to define the new offset and “goto first data
line” printcodes.

Page Offsets
The portrait page has printable width of eight
inches. That translates to 5760 decipoints (8*720).
So if we divide the page into three equal columns,
our offsets would be at 0, 1920, and 3840 for each
of our three columns respectively. The first data line
will always be row five regardless of the column.

Embedding PCL codes into filePro variables always
involves the ESC character, chr("27"). On any
processing table that uses PCL, I always define the
global variable ec=chr("27"), which is then used
to further define other codes. We can define a page
offset code for each of our three columns.

Define the following as global, but keep pc as non
global.

 1 ------- - - - - - - - - - - - - - - - -
 If: pf="y"
 Then: goto start
 2 ------- - - - - - - - - - - - - - - - -
 If:
 Then: ec=chr("27"); rn="0"; pf="y";
 3 ------- - - - - - - - - - - - - - - - -
 If: 'code for PCL5 printers
 Then: 'oa=ec{"&l0U"; ob=ec{"&l1920U"; oc=ec{"&l3840U"; od=ec{"&a-56R"
 4 ------- - - - - - - - - - - - - - - - -
 If: 'code for PCL3 printers at 10 pitch
 Then: oa=ec{"&a0L"; ob=ec{"&a27L"; oc=ec{"&a54L"; od=ec{"&a-56R"
 5 ------- - - - - - - - - - - - - - - - -
start If:
 Then: rn=rn+"1"
 6 ------- - - - - - - - - - - - - - - - -
 If: rn="1" ' disable perf skip
 Then: pc=ec{"&l0L"
 7 ------- - - - - - - - - - - - - - - - -
 If: rn eq "56"
 Then: pc=ob{od;
 8 ------- - - - - - - - - - - - - - - - -
 If: rn eq "112"
 Then: pc=oc{od;
 9 ------- - - - - - - - - - - - - - - - -
 If: rn="168" ' ... enable perf skip
 Then: pc=oa{ec{"&l1L"; rn="0"
 10 ------- - - - - - - - - - - - - - - - -
 If:
 Then: end
 11 ------- - - - - - - - - - - - - - - - -
 If:
 Then: pf(1,*,g); oa(8,*,g); ob(8,*,g); oc(8,*,g); od(7,*,g); pc(25,*);
 12 ------- - - - - - - - - - - - - - - - -
 If:
 Then: ec(1,*,g); rn(3,.0,g);

Figure 3

page 30 page 31
 oa=ec{"&l0U"
 ob=ec{"&l1920U"
 oc=ec{"&l3840U"

Once a column has been filled, the cursor has to be
returned back to the first data line. All we have to do
is have the printer back up 56 lines.
 od=ec{"&a-56R"

A relative positioning command is used to crawl
back up the page rather than an absolute row
number, just in case the heading had been defined
with different line spacing. When executed from the
last data line, the cursor will be returned to the first
data line waiting to begin a new column.

Pagination
There is still a problem remaining albeit quite
obscure at first glance. Consider what happens
on the last page of the report. Remember filePro
considers each page to have 172 lines. In the case
where it works out that just a few records end up on
the final page, filePro will pad the end of the page
with enough linefeeds to fill the 172 lines.

If enough lines are added to the end of the output,
the printer will eject one or more blank pages after
the last page. In the worst case, there would only
be one record on the last page and filePro would
emit 167 linefeeds. HP printers won't eject a par-
tially filled blank page, but they will do so a page
that is completely “filled” with blank lines. As this
is beyond the control of the processing table, we
have to look to the printer to deal with it. There is a
PCL command to fix most problems, and this is no
exception.

Perf Skip Command (^[&l#L)
The perf skip command is the PCL mechanism, that
when enabled, causes the printer to eject the page
when a linefeed moves the cursor past the bottom
margin. When disabled, the printer will only eject
the page upon receipt of a formfeed or printer reset.
Legal values to the command are “0” to disable
and “1” to enable the command. The default is
“1” (enabled). What we can do is disable the perf
skip on the first record of the page and enable it
only on the last record. It must be enabled on the
last record of the page so “filled” pages are ejected
properly. Because the perf is disabled in all but the
last record on the page, any trailing linefeeds on a
partially “filled” last page won’t push a sheet out of
the printer. The final printer reset from the printcode

table will take care of getting the last page out of
the printer.

Running the Operation
Refer to Figure 3 that shows a complete process-
ing table. Once the records are being processed, we
need to keep track of which record on the current
page is being processed. Assume the record count
for the current page is held in the global variable rn.
rn starts as “0” and is incremented as each record
is processed.

Note that when the counter reaches the 168th record,
od is omitted from pc. This allows the final linefeed
to cause the printer to eject the page. Additionally,
rc was reset to “0” so the process starts over on the
next page and the new page offset is also set to zero
“0” for the next page.

Duplex Printing
Although it is not addressed in the processing table
as shown, the methodology falls apart when print-
ing on the back side of the sheet because in a duplex
job as the offset is applied in the reverse direction.
That's great for binding but is totally wrong for this
application. You can tidy this up a bit, but for the
sake of discussion lets assume the variable oe con-
tains the odd/even page status, where “0” represents
odd and “1” represents even. Start with oe="0", and
then when processing the 168th record for the page,
toggle the value of oe between "0" and "1". Define
oa, ob, oc with negative values if oe="1" even or
with positive values if oe="0". There are no duplex
issues when using the “left margin” command to
position the columns.

Left Margin Command (^[&a###L)
The PCL3 DeskJet printers do NOT understand the
“sheet offset” command period. They do, however,
understand the "left margin" command. These two
commands are different. Not so much in what they
do on the surface, but more in the ramifications of
each of them. While the "sheet offset" command
physically moves the PCL coordinate system, the
"left margin" command only changes the point that
a CR returns to, if you get the meaning. J So after
a "sheet offset" command, the location 1400X is
physically different from where it had been previ-
ously as the coordinate system was shifted. The
"left margin" command is defined only in terms of a
character position, so its actual physical position is
dependent on the pitch of the current font. The loca-

page 32 page 33

tion 1400X is unaffected by the "left margin" com-
mand. The command is in the following form…
 ^[&a###L

where ### is the character position along the line
where the new left margin is located. If you are
using a fixed pitch font and are not relying on any
PCL positioning codes for alignment, then the left
margin code will probably be quite satisfactory.
Because the argument to the "left margin" com-
mand is dependent on the current pitch, there is
no universal command set for a two, three, or four
column format. That will be dependent on the cur-
rent font pitch. In any case, let's set up the variable
for a 10 pitch scenario for our current three column
format.
 oa=ec{"&a0L"
 ob=ec{"&a27L"
 oc=ec{"&a54L"

or if you wanted 12 pitch then
 oa=ec{"&a0L"
 ob=ec{"&a32L"
 oc=ec{"&a64L"

When defined as a "left Margin" command, the
same filePro variables should work equally as well
on the format for the LaserJet or the DeskJet.

The processing table contains the setup for both
PCL5 and PCL3 printers. It is set for PCL3 at
the moment. To use the PCL5 code, comment out
line 4 and then uncomment line 3. When printing
a duplex job, the PCL3 setup would preclude you
from having to worry about the odd/even page con-
siderations.

Try It Out
Included in the files is "prc.column", which is the
runable "prc" table shown in Figure 3. Use any data-
base you have that has enough records with a suit-
able field for sorting. Define an output format with
four heading lines and one data line. Define lines
per page and lines to print, both as 172. You can
populate the heading with whatever pleases you.
On the data line, just put *yourfield on the leftmost
position, and then at an appropriate distance to the
right to, far enough to accommodate the length of
*yourfield put the field *pc. Something like…
*4 *pc

where *4 here represents *yourfield. Rename the
output processing table to suit you situation, and
then run the output with a sort on *yourfield and a

selection set that will cause at least 200 records to
be selected. Hopefully, that will produce a couple of
pages with three nicely spaced columns.

Conclusion
The material presented here is quite portable and
can be easily modified to suit other layouts. This
one was configured to fit a default LaserJet 60 line
page. If you require a different page size or orienta-
tion change, you will have to initialize the printer
with the appropriate page format code for the task.
Fundamental to being successful is synchronizing
the printer format to the modified filePro output.

If you are unsure about formatting a LaserJet page,
review the article I wrote in the first issue of this
publication.

page 32 page 33

page 34 page 35

page 34 page 35

page 36 page 37

page 36 page 37

page 38 page 39

page 38 page 39

page 40 page 41

page 40 page 41

page 42

Cut-and-paste code
samples.Want more information?

Download our free 14-page sample issue at http://www.hvcomputer.com/fpdj.html

Includes all the things you would expect to find in a quality technical journal...
• Hints, tips, and tricks.
• Articles by experienced filePro developers, including fPTechnologies’ development team.
• Un(der)documented features.
• New features of the latest filePro release.
• Pointers to other sources of filePro-related information.
... and so much more!
• Cut-and-paste code samples.
• All code samples included. No need to type them in, or purchase them separately.
• Columns devoted to filePro issues specific to: Windows 95/98/2000/NT, Linux, and SCO Unix.
• Interviews with prominent filePro personalities.
• Reviews of filePro-related products and add-ons.
• Delivered electronically via the Internet, so it can’t be lost, delayed, or mauled by the post office.

(And no extra charges for international delivery.)

Hints, t
ips,

 an
d tric

ks

If paying via PayPal, you can fax this completed form to (914)206-4184
or

Mail this form with a check (payable in US currency, to “Hudson Valley Computer Associates, Inc.”),
or credit card information and signature to:

Hudson Valley Computer Associates, Inc.
PO Box 859, 120 Sixth Street
Verplanck, NY 10596-0859

The definitive source of information for the filePro developer.

Published quarterly, distributed electronically, 50+ pages per issue.
$75 (US currency) annually. Back issues are $25 (US currency) each.

Contact us for information on discounts for multiple subscriptions to the same company.

(Please print clearly)

Name: __ Phone: ______________________________

Company: ___ Fax: ______________________________

Address: __ Country: _____________________________

City/State/Zip: ___

E-mail: __

[] 1 year subscription ($75 US) [] Back issues ($25 US each). Which issue(s)? ______________________

We accept credit cards through PayPal. Please specify
“paypal@hvcomputer.com” as your referral address.
Sign up at http://www.paypal.com

fileProDeveloper’s
JournalDid y

ou
hav

e to

bor
row

 a f
rien

d’s
 co

py?

Why
not

 ge
t yo

ur
ow

n?

(It
’s e

asy
!)

